FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants

نویسندگان

  • David Bednar
  • Koen Beerens
  • Eva Sebestova
  • Jaroslav Bendl
  • Sagar D. Khare
  • Radka Chaloupkova
  • Zbynek Prokop
  • Jan Brezovsky
  • David Baker
  • Jirí Damborský
چکیده

There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FireProt: web server for automated design of thermostable proteins

There is a continuous interest in increasing proteins stability to enhance their usability in numerous biomedical and biotechnological applications. A number of in silico tools for the prediction of the effect of mutations on protein stability have been developed recently. However, only single-point mutations with a small effect on protein stability are typically predicted with the existing too...

متن کامل

Biased mutation-assembling: an efficient method for rapid directed evolution through simultaneous mutation accumulation.

We have developed an efficient optimization technique, 'biased mutation-assembling', for improving protein properties such as thermostability. In this strategy, a mutant library is constructed using the overlap extension polymerase chain reaction technique with DNA fragments from wild-type and phenotypically advantageous mutant genes, in which the number of mutations assembled in the wild-type ...

متن کامل

Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants.

In vitro synthesis of cDNA is one of the most important techniques in present molecular biology. Faithful synthesis of long cDNA on highly structured RNA templates requires thermostable and processive reverse transcriptases. In a recent attempt to increase the thermostability of the wt Moloney Murine leukemia virus reverse transcriptase (M-MuLV RT), we have employed the compartmentalized riboso...

متن کامل

STRUCTURAL OPTIMIZATION USING BIG BANG-BIG CRUNCH ALGORITHM: A REVIEW

The big bang-big crunch (BB-BC) algorithm is a popular metaheuristic optimization technique proposed based on one of the theories for the evolution of the universe. The algorithm utilizes a two-phase search mechanism: big-bang phase and big-crunch phase. In the big-bang phase the concept of energy dissipation is considered to produce disorder and randomness in the candidate population while in ...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015